- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources4
- Resource Type
-
0000000004000000
- More
- Availability
-
40
- Author / Contributor
- Filter by Author / Creator
-
-
Kumar, Shrawan (3)
-
Hong, Jiuzu (2)
-
KUMAR, SHRAWAN (1)
-
Rimányi, Richárd (1)
-
Weber, Andrzej (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
null (2)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Hong, Jiuzu; Kumar, Shrawan (, Compositio Mathematica)We study the spaces of twisted conformal blocks attached to a$$\Gamma$$-curve$$\Sigma$$with marked$$\Gamma$$-orbits and an action of$$\Gamma$$on a simple Lie algebra$$\mathfrak {g}$$, where$$\Gamma$$is a finite group. We prove that if$$\Gamma$$stabilizes a Borel subalgebra of$$\mathfrak {g}$$, then the propagation theorem and factorization theorem hold. We endow a flat projective connection on the sheaf of twisted conformal blocks attached to a smooth family of pointed$$\Gamma$$-curves; in particular, it is locally free. We also prove that the sheaf of twisted conformal blocks on the stable compactification of Hurwitz stack is locally free. Let$$\mathscr {G}$$be the parahoric Bruhat–Tits group scheme on the quotient curve$$\Sigma /\Gamma$$obtained via the$$\Gamma$$-invariance of Weil restriction associated to$$\Sigma$$and the simply connected simple algebraic group$$G$$with Lie algebra$$\mathfrak {g}$$. We prove that the space of twisted conformal blocks can be identified with the space of generalized theta functions on the moduli stack of quasi-parabolic$$\mathscr {G}$$-torsors on$$\Sigma /\Gamma$$when the level$$c$$is divisible by$$|\Gamma |$$(establishing a conjecture due to Pappas and Rapoport).more » « less
-
Kumar, Shrawan; Rimányi, Richárd; Weber, Andrzej (, Mathematische Annalen)null (Ed.)
-
KUMAR, SHRAWAN (, Transformation Groups)null (Ed.)
An official website of the United States government
